NOTATION

Ty, normal boiling point of liquid at atmospheric pressure; nc, number of carbon atoms in molecule,
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CONDUCTIVITY IN ALLOTROPIC PHASE TRANSITIONS

G. N. Dul'nev, I, K. Meshkovskii, ' UDC 537,311.33
V. V. Novikov, and I. A. Sokolov

A method is given for calculating the resistivity as a function of temperature in the presence of
structural phase transitions in solids.

Many studies have been performed [1-3] on the conductivity in the presence of allotropic phase transi-
tions, which is a subject related to the design of critical resistors. However, the basic characteristic, viz.,
the electrical resistance R as a function of temperature T, has so far been described only by approximation.

Here we present a quantitative theory that employs the initial and final critical conductivities with the
heat of phase transition and the temperature range of the transition to calculate the resistance as a function of
temperature., Realistic objects are characteristic critical thermistors with structural phase transitions of
different kinds: the metal — semiconductor transition in VO, [4-8] and the ferroelectric — paraelectric transi-
tion in BaTiO; ceramic [1].

The initial model concepts include the existence of a structurally homogeneous phase below the transi-
tion point, which is characterized by a specific conductivity ¢, and a temperature coefficient of the conduc-
tivity o,

As the temperature rises, deviations from o, as corrected by ¢, begin to appear at T = Tj; in the range
from Tj to Ty there is a change in the electrical conductivity, and above Ty there is a structurally homogeneous
phase with conductivity o, and temperature coefficient of conductivity o,

There is a phase transition in the range Tj-T; which is due to the difference in chemical potential be-
tween the two phases. The new phase arises in the old matrix in the theory of heterogeneous transitions [9],
which occurs by nucleation and growth of the new phase. We assume that the major changes in concentration
are due to the growth, which occurs at the nuclei. In turn, nucleation is due to heterophase fluctuations, The
nucleation probability is related to the particle mobility via the factor exp (~U/KT), in which U is an activation
energy [9], The overall concentration of such nuclei is proportional to the internal energy of the solid, so the
temperature dependence of the concentration tends to run parallel to the temperature dependence of the specific
heat.
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The activation energy of growth is always less than that for the nucleation, so nucleation is rapidly fol-
lowed by growth, which transforms the bulk of the material. Nucleation and growth are independent processes
resulting from the fluctuations. Growth arises only from fluctuations that exceed the critical level and which
occur near the interface between the phases, i.e., near the nuclei, The entropy of activation characterizes
the probability of occurrence of a favorable spatial orientation [10],

Therefore, the concentration of nuclei is proportional to the specific heat, while the concentration of
the new phase arising by growth is proportional to the entropy change in the transition,

Let m, be the volume concentration of the new phase; then we perform a normalization over the tem-
perature range in which the transition occurs to get
C,—C,;i AS —AS;
Cog—Cyi ASg— ASj

My = (1)
The first cofactor defines the probability of nﬁcleation, while the second defines the growth probability. The
product of the probabilities for these independent events defines the probability that the volume will go from
one phase to the other, This probability, expressed as a fraction, may be described as the proportion of the
volume that has gone over to the new state,

Therefore , the model is based on the following axiom: the proportion of the volume converted to one
phase from another in an allotropic transition is equal to the probability of formation of the new phase ex~
pressed as a fraction.

The temperature course of Cy may be derived from the Einstein — Nernst — Lindemann expression {10]:

( G ( o \]2 0 0 \?
exp——) — (exp ~) (——)
3 T T/ 2T /2T (2)
v = “2f © 1 s T e ) 2 .
exXp ——— exp —— —
(o7 ) (=25 —)
The characteristic temperature for the substance is defined by & = 134.,4V TS/AV2; 3, where V is the molar

volume, A is the molecular mass, and Tg is the melting point. The value of AS may be calculated from the
heat of transition AH = TAS,

From (1) we can calculate m, as a function of temperature, which can then be used with the theory of
generalized conduction [17-19] to relate the electrical conductivity to temperature. For this purpose we need
an analytic expression for ¢ = o(m,)., -

The most general description for the structure change in a binary heterogeneous system is in terms of
the concentrations m, and m, = (1 — m,); the theory indicates that the second phase (volume concentration
m,) initially forms isolated and randomly disposed clusters in the continuous first phase, which grow to some
value my < m¢ while remaining isolated (Fig. 1a,b), At concentrations m, = m¢ and above, the clusters com-
bine into a single unbounded cluster, and values m, > m; result in increase in the volume of this cluster
(Fig. 1c) until m, = 1. If the conductivities are very different, e.g., Oy, metallic and og dielectric (vy = 0g/
om = 0), then there is a discontinuity in the effective conductivity o as a function of m, (conduction jump) at
my = mm = Mg, Viz., 0 =0 for me =0, whereas for mpy > me we get 0 # 0. The value of mg is then called
the threshold and indicates what value of mp, is required to produce an infinite cluster of the conducting com-
ponent, Computer simulation of the random distribution in a three-dimensional binary heterogeneous system
has been combined with laboratory experiment to show that me fits a random distribution and is on the average
me = 0,15 + 0,03 [20, 21].

PP
4%

Fig. 1. Structure of a binary heterogeneous system
for various values of the concentration: a) nuclea-
tion of new phase (isolated clusters); b) growth of
nuclei (isolated clusters); c¢)formation of unbounded
cluster.
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of temperature for VO,: 1) values observed

a—/ with the temperature increasing; 2) values
! °—z observed with the temperature decreasing
{1]. The solid lines are theoretical values
for 0,12 =me = 0,18, R, Q; T, °C,

00 % 1_ Fig. 2. Electrical resistance as a function

50

50 60 /e

Analytical description of the conductivity in such a binary system in the presence of a jump at m, = m,
requires a description of the cluster topology. An analytic description has been suggested [19] for the topology,
and this has been used in a method of calculating o for a binary heterogeneous system with any value of v =
0q/om:

AF Fs - sz]‘ (3)

G/Om Fi‘i‘v{ ==k + A==
Here the symbols are: F, = [(mpy — mg)/(1 — me))-5; F,= mé/3; 1,=VF{; Fg=(0 - bY; F4=1-F,- 2F;,
and the following inequalities must be met:

if Fy > F, then
AF =F, —F,, lz=mc1/3' (4)

if Fy = F,, then

The first case corresponds physically to the formation of an unbounded cluster, whereas the second corresponds
to the formation of closed inclusions, i.e., isolated clusters.

Then (1)-(5) allows one to perform calculations on the conductivity in allotropic phase transitions. We
now consider the electrical resistivity as a function of temperature for various materials with structural transi-
tions, Figure 2 (solid lines) shows results along with experimental data (points) for a device using the metal —
semiconductor transition in VO,, When p = 0~ !is calculated from (3)-(5), the value of the concentration corre-
sponding to the discontinuity occurs in the range 0,12 = m¢ = 0,18, which results in the hatched region shown in
Fig. 2. The initial data were as follows: conductivity of the metal component opy = 4.65 Q71 of the semicon-
ductor component 04 = 7.4-1073 @71, and the parameters appearing in (2) and (3) were V = 36,9-10"%m?, A =
83, Tg = 1818°K, AH = 4,3 J/kmole, Tj = 323°K, Tf = 348°K [22].

it follows from Fig, 2 that R = R(T) shows hysteresis: the concentrations m} and m} of the metallic phase
are different at a given temperature in accordance with whether the temperature is increasing or decreasing,

a a :
| I
| |
l o *
A
N Ry Ry
N | o2 P Ry Ry
_ R, R,
] 2 2
! ! b l c
a ! !
8 ) | Ry
a a

Fig, 3. Calculation of the effective conductivity of a
ceramic grain: a) grain model; b) equivalent circuit
for conduction before phase transition; c) the same
after phase transition.
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Fig, 4. Electrical resistance of BaTiO;
B ! as a function of temperature {the points
1 . /i/ ’ ‘ are fromexperiment and the solid lines
;/' are calculations for 0.12 (1) = mg = 0,18
!/: (2. R, @; T, °C.
w0? /4/ -
: //
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”_0 w 20 40. T
Hysteresis is implied by the structure of (1), which we write for the forward and reverse branches of the
R = R(T) curve on the basis that the initial temperature Tj and the final temperature Ty change places, as do
the corresponding values of Cy and AS. The concentrations on the forward and reverse branches must be cal-
culated from
. C,—Cy,y AS—AS§; »  C,—C,s AS —ASt
= » M CC,; AS —AS, ()
Cys—Cyy ASg—AS; Coi—Cyp A5 —A3

m

(%)

1t follows from (6) that m} #m} and that (1) is not invariant under the sense of the process, i.e., one
always expects hysteresis in an allotropic phase transition, whose exact extent is dependent on the order of
magnitude of the heat of the phase transition, and which in certain cases may be suppressed by other pro-
cesses, For example, percolation effects (mg = 0,15 = 0.03) lead to some spread in the forward and reverse
branches, which may then overlap, in which case the hysteresis is not clearly seen, Further, there may be
other physical processes that suppress the hysteresis. This is clearly seen by the R = R(T) relation for
BaTiO; semiconductor ceramic near the ferroelectric — paraelectric phase transition, In this transition,
there is an anomalous increase in the specific resistance of the material. This has been ascribed to pro-
cesses occurring at grain boundaries and at the margins of domains, where double electrical layers arise,
which determine the conductivity of the material {11-14]. The charges accumulated in these double layers
determine the potential barriers to the conduction electrons and themselves are dependent on the state of the
BaTiO; crystals forming the cores of the grains {15, 16], BaTiO; is ferroelectric below the transition tem-
perature, but paraelectric above it, while the transition is accompanied by an increase in height in the poten-
tial barriers at the grain boundaries {11-13]. A grain of semiconductor ceramic may be represented as a core
of material surrounded by a shell having a different conductivity, The potential barriers between grains are
low in the ferroelectric state, and the conductivity of the ceramic is governed by that of the cores and by that
of the surrounding layers. The potential barriers become much higher when the ferroelectric —paraelectric
transition occurs, and therefore the resistivity of the paraelectric state is much higher on account of the con-
tact resistances between the grains (resistance R, in Fig. 3c).

A mode of cube-in-cube type can be used to a good approximation to calculate the effective resistance.
We split up the cubes with planes a — @ impermeable to the current lines as shown in Fig, 3a and denote the
resistance of the core by R, and that of the boundary layers by R, and R3; the mode of connection of the latter
is shown in Fig, 3b. The resistances Rj of the regions i = 1, 2, 3 are defined by simple formulas:

L — L, Ly Ly
= PO o =2 — R = ———ee 7
Ry =p, LS , Ry=p, L§ 3= L? sz’ N

The specific resistance pj and length Lj for the current lines are chosen in accordance with {13, 14],
The conductivity is represented by the equivalent circuit of Fig. 3c, which incorporates the potential barriers
at the grain boundaries, after the transition point, where the resistance of a barrier is [1]

R,=p. % p, = Cexp (U/IKT). =
2
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As the conductivities of the individual grains are known in the two states, we can discuss the conduction
through the thermoresistor, In the transition range, the material is a two-component mixture with a random
distribution of the components. Below Ty, the material is hemogeneous and has the high conductivity o3y,
while the phase transition finishes at Tf, where the material goes over completely to the new phase having the
much reduced conductivity 04 < 0,,,. We have seen above that the continuous component of conductivity oy
produces isolated clusters of conductivity 0y, and then these clusters become an unbounded cluster as my, in-
creases. Any further increase in m;, merely increases the volume occupied by the unbounded cluster of con-
ductivity oy,

Formulas (1)-(8) are used to calculate R = ¢~ ! for a BaTiO; thermistor onthe basis of the following param-
eters (10, 13, 14]: the conductivities of the components are oy, =4.1072Q7!, 64 = 4+.107° @~ while the param-
eters appearing in (2) and (3) are V = 39,7-10 % m?, A = 233, Tg = 1600°K, and the heat of transformation in the
phase transition is AH = 0,15 J/kmole, Tj = 363°K, Ty = 423°K, Figure 4 shows theoretical results on the con-
ductivity of a BaTiO; semiconductor device. The measured values are shown as points, while the theoretical
values are shown as solid lines, which together form a certain region corresponding to the range of concentra-
tions 0.12 = m¢ = 0.18. Here the percolatlon effect is accompanied by a process assoc1ated with the above

phenomena at the grain contacts, which suppresses the appearance of hysteresis in R = R(T). However, a
study of the structure of BaTiO; in the phase transition has shown that there is temperature hysteresis [15],

Comparison of Figs. 2 and 4 shows satisfactory agreement between the observed and theoretical results,
and therefore this method can be used in calculating the electrical conductivity as a function of temperature
for structural phase transitions in solids.

NCTATION

T, Tj, Tf, and Tg, current, initial, final (transition), and fusion temperatures of the material, respec-
tively; R, resistivity; o, conductivity; o, thermal diffusivity; Cy, specific heat at constant volume; AS, en-
tropy change in phase transition; AH, heat of phase transition; R', universal gas constant; m, volume con-
centration; Iy, U, width and height of the potential barrier. Subscripts: i, initial value; f, final value; m,
metal; d, dielectric; ¢, threshold of percolation.
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AN ANOMALY IN THE KINETIC PROPERTIES OF TIN
IN THE POLYMORPHIC PHASE TRANSITION REGION

A. M., Magomedov UDC 669.765,872:537.3

Experimental data are presented on the resistivity and thermo-emf of tin over the temperature
range —183 to 700°C, on thermal conductivity from ~183 to + 300°C, and on the speed of ultra-
sound from 20 to 400°C, Anomalies appear in the temperature curves corresponding to poly-
movrphic trangitions in the tin.

Study of the thermophysical properties of tin is of interest both for the development of theory and for
practical goals.

Three modifications of tin in the solid state have been established: gray tin, @-Sn; white, S-tin, and
v~tin, whichmay transform to each other at certain temperatures according to the pattern a-Sn == f-Sn =
y-Sn == 11qu1d tin, Of these modifications, gray tin has semiconductor properties. It crystallizes in a dia-
mond lattice and is stable below 13,2°C, Above this temperature o-Sn transforms to §-Sn, which crystallizes
in a tetragonal lattice, The highest a- and S-tin conversion rate occurs at —40°C, Upon heating of white tin
above 161°C it transforms to the rhombic modification, y-tin,

The three modifications are characterized by different densities: o, 5.846; B, 7.298, and v, 6.600
5 :
g/cm?,

The structure of liquid tin has been examined in many studies; their results indicate that in tin an in-
complete transformation of directed bond to metallic occurs, with conversion of the crystalline structure into
one of the structures characteristic of metallic bonding — bee or cph. Khrushchev [1] explains the presence of
lateral intensity maxima in the intensity curves and radial distribution function as the result of directed bonds
near the crystallization point, These maxima disappear with increase in temperature. After analysis of vari-
ous experimental data Turakawa et al, [2] proposed that liquid tin near the melting point is a system of ordered
regions corresponding to gray tin structure distributed in a metallic structure. Conductivity and viscosity
studies {3] have shown that tin has an anomaly in the resistance temperature coefficient at 520°C; this was re-
lated to a change in atomic packing, i.e., to a change in close order.

A number of studies [3-10] have considered the kinetic properties of tin above room temperature, It
follows from them that with the exception of [3, 7] the temperature curves of the various kinetic properties
show no singular points corresponding to structural transformations of the various modifications in tin, How-
ever, the available information on the kinetic properties of tin at low temperature is very limited.

The present study is dedicated to an investigation of the thermal conductivity, resistivity, thermo-emf,
and speed of ultrasound in Sn-000 over a wide temperature interval encompassing both the solid and liquid
phase,

Electrical Resistance, The experimentally determined temperature dependence of electrical resistivity
in tin is shown in Fig, 1, Measurements were made by the four-probe method with an accuracy of 1%. The
tin transformations noted above were found from changes in the temperature coefficient of resistivity in the
curve p = f(t) at temperatures of 50, 100, and 520°C,

Table 1 presents values of dp/dt corresponding to the various modifications. The temperature intervals
are accurate to £10°C,
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